1.ПОНЯТИЕ МНОЖЕСТВА. ОПЕРАЦИИ НАД МНОЖЕСТВАМИ: ОБЪЕДИНЕНИЕ, ПЕРЕСЕЧЕНИЕ, РАЗНОСТЬ.
читать дальше Множество - это совокупность объектов, рассматриваемая как одно целое. Понятие множества принимается за основное, т. е. не сводимое к другим понятиям. Объекты, составляющие данное множество, называются его элементами.
Два множества A и B называются равными, если они состоят из одних и тех же элементов, т. е. если каждый элемент множества A принадлежит B и, обратно, каждый элемент B принадлежит A. Тогда пишут A = B. Таким образом, множество однозначно определяется его элементами и не зависит от порядка записи этих элементов. Например, множество из трех элементов a, b, c допускает шесть видов записи:
{a, b, c} = {a, c, b} = {b, a, c} = {b, c, a} = {c, a, b} = {c, b, a}
Объединением множеств A и B называется множество элементов, принадлежащих по крайней мере одному из данных множеств (т. е. либо A, либо B, либо одновременно и A и B). Обозначают и читают "объединение A и B".
Пересечением множеств A и B называется множество элементов, принадлежащих одновременно и A и B. Обозначают и читают "пересечение A и B".
Разностью множеств A и B называется множество элементов, принадлежащих A и не принадлежащих B. Обозначают A\B и читают "разность A и B".
Пример 1. Пусть A есть отрезок [1, 3], B - отрезок [2, 4]; тогда объединением будет отрезок [1, 4], пересечением - отрезок [2, 3], разностью A\B - полуинтервал [1, 2), B\A - полуинтервал (3, 4].
Операции объединения и пересечения множеств обладают многими свойствами сложения и умножения чисел, например переместительным, сочетательным и распределительным свойствами.
Понятия объединения и пересечения множеств дословно переносятся на случай более двух множеств и даже на случай любого конечного или бесконечного множества множеств. 2.ОСНОВНЫЕ ЗАКОНЫ ОПЕРАЦИЙ НАД МНОЖЕСТВАМИ.
читать дальшеНад множествами, как и над многими другими математическими объектами, можно совершать различные операции, которые иногда называют теоретико-множественными операциями или сет-операциями. В результате операций из исходных множеств получаются новые.
Пересечением множеств А и В называется множество, состоящее их всех тех и только тех элементов, которые принадлежат множествам А и В одновременно. Символически пересечение множеств А и В обозначается так: АВ, где символ - знак пересечения множеств. Используя характеристическое свойство, определение 1.4 можно записать следующим образом:
Р=АВ= {x xA и xB}={x xA xB}.
Объединением двух множеств А и В называется такое множество С, которое состоит из всех тех элементов, которые принадлежат хотя бы одному из множеств А или В. Символически объединение двух множеств А и В обозначается так: А В, где - символ объединения множеств. Определение 1.5 можно записать с помощью характеристического свойства:
С= А В={x xA или xB}.
Разностью двух множеств А и В называется множество, состоящее из всех тех и только тех элементов, которые принадлежат множеству А и не принадлежат множеству В. Символически разность двух множеств обозначается так: А В, где символ является знаком разности для множеств. С помощью характеристического свойства запишем определение 1.6 следующим образом:
C=A B={x xA и xB}