9. ОСНОВНЫЕ ЭЛЕМЕНТАРНЫЕ ФУНКЦИИ
читать дальшеПростейшими элементарными функциями обычно называют линейную (y=kx+b), квадратичную (y=ax2+bx+c), степенную (y=xn, где n целое число, не равно 1), показательную (y=ax,где a больше 0 и не равно 1), логарифмическую (y=loga x, где a больше 0 и не равно 1), тригонометрические (y=sin x, y=cos x, y=tg x, y=ctg x), обратные тригонометрические (y=arcsin x, y=arccos x, y=arctg x, y=arcctg x).
К элементарным функциям относятся основные элементарные функции и те, которые можно образовать из них с помощью конечного числа операций (сложения, вычитания, умножения и деления) и суперпозиций.
Выделим классы функций, которые получены из элементарных:
Целая рациональная функция (или многочлен): y=a0xn+a1xn-1+...+an, где n - целое неотрицательное число (степень многочлена), a0, a1, ..., an - постоянные числа (коэффициенты).
Дробно-рациональная функция, которая является отношением двух целых рациональных функций.
Целые рациональные и дробно-рациональные образуют класс рациональных функций.
Иррациональная функция - это та, которая строится с помощью суперпозиции рациональной функции и степенных функций с рациональными показателями.
Рациональная и иррациональная функции образуют класс алгебраических функций. Алгебраическая функция - произвольная функция y=f(x), которая удовлетворяет уравнению:
A0(x)yn+A1(x)yn-1+...+An-1(x)y+An(x)=0.
Элементарные функции, которые не являются алгебраическими, называются трансцендентными.
10. ПОНЯТИЕ ПРЕДЕЛА. ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ.
читать дальше Предел — постоянная, к которой неограниченно приближается некоторая переменная величина, зависящая от другой переменной величины, при определённом изменении последней. Простейшим является понятие Предел числовой последовательности, с помощью которого могут быть определены понятия Предел функции, Предел последовательности точек пространства, Предел интегральных сумм.
Если последовательность имеет Предел, то говорят, что она сходится.
9. ОСНОВНЫЕ ЭЛЕМЕНТАРНЫЕ ФУНКЦИИ
читать дальше
10. ПОНЯТИЕ ПРЕДЕЛА. ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ.
читать дальше
читать дальше
10. ПОНЯТИЕ ПРЕДЕЛА. ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ.
читать дальше